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LETTER TO THE EDITOR 

Binary correlations in random matrix spectra? 

A Pandey and J B French$ 
Department of Physics and Astronomy, University of Rochester, Roche-' ,,, NY 14627 

Received 29 November 1978 

Abstract. The spectrum for a Gaussian orthogonal ensemble of random matrices aug- 
mented by a pairing interaction, which has been recently given by Edwards and Jones and by 
Jones, Kosterlitz and Thouless, is derived in other ways. Several ex.tensions are given and 
relationships to other problems of current interest discussed. Stress is laid on the 
importance of the dominance of binary Hamiltonian correlations in the moments which 
define the density and relevant correlation functions. 

The eigenvalue spectrum for a Gaussian orthogonal ensemble (GOE) of large-dimen- 
sional random matrices H, augmented by a multiple of the pairing interaction K (which 
has (d - 1) zero eigenvalues and one unit eigenvalue), has been recently given by 
Edwards and Jones (1976) and by Jones et a1 (1978). In this letter we give alternative 
methods of solution (the first of which is similar in spirit to that of Jones et a l ) ,  and some 
extensions, which follow directly from a simple principle used by Wigner (1955) in his 
original solution for the GOE itself, and a corresponding counting theorem. The point of 
doing this is to establish connections between this problem and a number of other 
spectral and fluctuation problems which are of current interest. 

We have H, = H + aK. A particularly simple derivation of the ensemble average 
and the ensemble variance of the 'ground-state' energy E (i.e. the energy which tends to 
a for large a] comes from Brillouin-Wigner perturbation theory using aK as the 
unperturbed Hamiltonian. Thus, in the K-diagonal representation (the results being 
independent of this choice), we encounter 

Ar = C HlilHiliZ * . Hi,+ll = Hli(Gr)iJll (1) 
i  1 ,. .. , i,, 1  f 1 ij 

in which G, a member of a (d - 1)-dimensional GOE, derives from H by putting to zero 
the first row and column, i.e. every Hli(=Hil). The B-W expansion§ is now 

m 

t Supported in part by the US Department of Energy. 
t John Simon Guggenheim Memorial Fellow, 1977-8. 
8 Notarion. For any quantity A, A is its ensemble average. We have Hij = 0 and we take z= (1 + 6ij)d-1,  so 
that, for large d, the GOE spectrum has unit variance. We shall encounter ahead (F)=d-'  Tr(F) for any 
operator F. The symbol (=) indicates equality to lowest order in d- ' ,  while the double arrow (+) will indicate 
the function generated by the quantities on its left as moments. 
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If, in the first form of (2), we use (Ar /Er+i )  = &/(E)'+', then (-a +a-') follows 
directly from (3,4) below. For the variance of E we have, in the second form of (2), 
made a Taylor expansion of E about its value EO (no longer a random variable) defined 
by H I ' =  0, SA, = A, - A, = 0. In the last form we have used the fact that E is a function 
of (a +Hll), not of either separately, so that (aE/aH11)0 = (dEo/da); we have also used 
the identity that 

@flax), = - (a f /aY)x(aY/ax) f  

for an arbitrary function f(x, y),  which gives 

(aE/aA,)o = (Eo)-'-'(dEo/da). 

We have written the last form in terms of rather than Eo since, via the second form, 
ensemble averaging in the equation yields E =Eo. 

Now, to evaluate the average and variance of E we need the averages and 
covariances of the Am which both follow from (1). Since G' is independent of the H l i  we 
have x z V + l  = 0 and 

iZv = c ( H l i )  (G2v)ii = ( F y  = (z? = tu = (Y + 1)-' ( y )  2 
i 

+ S(x) = (2~)"(4-x~)" '  = T-' sin +(x) (3) 
where $(x) = cos-'(-x/2), the angIe between the negative x axis and the radius vector; 
thus O S + S T .  We have drawn here on Wigner's (1955) evaluation of the GOE 
moments as Catalan numbers (Riordan 1968), the moments of a zero-centered 
'semicircle' of radius 2. Using a result for the Catalan generator 

tu /X2v+1 
V 

(Wigner 1955, Riordan 1968) we have from (2,3) that, when 
series is divergent), 

> 2 (otherwise the 

E = a  +I V ( tv / (B)Zv+l)  = a  +$[E-{E2-4}1'2] = a +a-' (4) 

where the last form comes from solving the equation and is valid only when la1 > 1, 
there being no solution for la1 < 1. The result (4) agrees with the earlier derivations. 

For the variance, using Hlifl1HlkH,I = d-'{Sii Ski+ S i k  Sil + S i !  S j k }  when ( i ,  j ,  k, 1) # 
1, we find immediately that 

( 5 )  

in which we have dropped the covariance term which is of order d-' (its value is given by 
Mon and French, 1975). Since the A, are independent of Hll we have from the last 
form of (21, valid to lowest order in d-', that for the isolated eigenvalue 

S A Z ~ - ~ S A , =  cov{(GZv-'), (G')}+2d- 'I (G 9- 2d-'tV 



Letter to the Editor L85 

where in the second step we have carried out one summation by noting that 6A, 8As  
depends only on ( r  f s), and is zero when r + s = odd and given by ( 5 )  when r + s = even. 
In the third and fourth steps we have evaluated 1 + Z  (2v + l)t,,/l?2"i2 = (dl?/da)-' by 
taking an E-derivative of equation (4). The variance, which vanishes in the asymptotic 
-d limit, is small. It goes to zero (to order d- ' )  as the level moves towards the semicircle 
(a + 1,) and increases to a maximum value 2/d as it moves away. This curious 
behaviour is not so surprising when we recall that the GOE levels have even smaller 
variances, -d-2  In d (French er al 1978, Dyson 1962a). 

For other states, first-order perturbation theory using G to split the degeneracy 
gives back the semicircle to order d-' .  When I Q ]  C 1, treating the pairing matrix as 
perturbation, one finds, again to order d-', the unperturbed semicircle. These results 
are also in agreement with earlier derivations. 

The method used here relies rather heavily on the simplicity of the K spectrum. For 
a more general method we turn to the principle referred to at the beginning and used by 
Wigner in evaluatinlhe GOE moments. This is that, in a wide range of circumstances, 
the moment = (HP) is dominated by binary correlations so that A?2u/(A?2)u becomes 
the number of binary combinations of 2v H's which contribute to the trace; the allowed 
combinations are only those in which any correlated pair contracts only around a fully 
pair-correlated set of H's; thus, with A A ,  BB denoting a correlated pair of H's 
(=X HijHji), ABAB is forbidden while AABB and ABBA are allowed, the difference 
being that in the first the number of matrix-element contributions is down by order d-' 
compared with the allowed ones. The same principle applies to the moments 
( ( H - ~ C X K ) ~ ) ;  but since, for any operator Q , A A Q =  (l+d-')Q while A Q A =  
d- ' (Q +Tr  Q ) ,  we see that, for large d, contractions around K are also forbidden unless 
we can take advantage of cyclic invariance of the trace, as we can with ( A K A )  but not 
with (KAKA) .  (In other words we should think of correlations on the circle rather than 
on the line.) Since K' = K contractions around powers of K are similarly forbidden. 

The counting theorem evaluates pi ,  the number of ways in which (p  - 6 )  pair- 
correlated H's can be inserted on a line which already contains l operators around 
which correlations are forbidden; thus with p = 4, [ = 2 we have H'KK, KH'K, KKH2 
and HKKH so that p i  = 4. Note that ( p  - 5) is necessarily even. As indicated in (3) 
Wigner's result for [ = 0 is p?' = t u ;  for t > 0 we have (Mon and French 1975, French et 
a1 1978) 

in which the functions U&) = (-l)'(sin +)-' sin( l+ 1)rjl are the Chebyshevpolynomials 
of the second kind, defined for (-2,2) and orthonormal with the semicircular & ( x ) ,  
generated by the p &  as weight function. The result (7) was derived by considering the 
response to infinitesimal deformations of the GOE ( H  + H + GaQ) and used to calculate 
GOE fluctuation measures in terms of the two-point correlation function (whose (p, 4 )  
moment is 2d-2 2 &:EL:). The dominance of binary correlations is shown by the close 
agreement between these results and the exact ones, which extends in fact (Pandey 
1978, to be published) to all three of the standard ensembles, orthogonal, unitary and 
symplectic (Dyson 1962b), being exact for the unitary ensemble. 

We see now that the ensemble-averaged p'th moment of Ha becomes 
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(cos 4 + a )  
(a  +a- '+2 cos 4 )  = p o ( x )  - (2ad  sin 41-l 

1 x -2a 
= & ( x )  + - 

= D o ( x )  (8) 

2ad (a  + ~ I - ' - x ) ( ~ - x ~ ) ~ / ~  

so that when la1 < 1, Ha has, to order d- I ,  simply the semicircular spectrum. It should 
not be taken for granted however that the d-' correction displayed in (8), which of 
course vanishes outside the semicircle, is the only correction of that order. 

We have in (8) restricted ourselves to la1 < 1. For la1 > 1, for which the final l 
summation is not convergent, we should in principle evaluate the l summation before 
inverting the moment expansion. But more simply we recognise that, in the moments 
(8), the l sum is a truncated binomial expansion and then by changing variables we 
relate the densities for reciprocal values of a. Explicitly, writing 

D 

and noting that kCp = F E c  we find 

the second term being zero when p is odd. Then from (8) we have, observing that 

1 1 1 x - 2 1 .  
57[4-x ] 257 (a  +a-1-x)[4-X21'/2 2 1/2-- 

- 

1 x - 2 a  1 
2ad ( c Y + ~ - ' - x ) [ ~ - x  ] d = P O ( X )  + - 2 1 /2+-S(X-a -a - ' )  

- p o ( x ) + d - '  S ( x - a - a - ' )  (9) 

and have thus rederived the earlier results along with d-' corrections to the semicircle, 
as given already by Jones et a1 (1978). The variance of the isolated eigenvalues, which 
we have given above, can also be derived by calculating M p ( a )  in (8) to dP2-order terms, 
or by calculating the covariance of the moments ((Ha)'); we have verified (6) by the 
latter procedure. 

The spectrum and fluctuations for more general Hamiltonians are of interest in 
studying the effects which an almost good symmetry produces (by moderating the level 
repulsion) on the energy level and strength fluctuations (Dyson 1962~) .  This problem is 
solvable in terms of the density and correlation functions for a GOE augmented by a 
multiple of the bilinear Casimir operator for the group in question ( K  is such an 
operator, for the symplectic group, but one of little interest in the present context). A 
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similar problem, which can be handled in a similar way, arises for a system with a 
strongly collective normal mode in which the other parts of the Hamiltonian are 
representable by a random operator. 

Formally we can apply the same procedure as above to the Hamiltonian (H + aQ). 
Starting once again with the first expansion of $p(a) given by (8) we find 

1 
2.n P , ( x ) = ~ ~ ( x ) + - ( ~ - x ~ ) - ' / ~ ( ( x  -2aQ)/(aQ +(~Q) - ' -x ) )  

+ d - ' C ' S ( x  -aq;-(aqi)-') 
i 

2aYf ( Y )  dY = p o ( x )  - - Im 
[ x  +(x2-4)1/2-2ay](x2-4)'/2 

a slight generalisation of a form given by Jones et a1 (1978). Here the 4; are the 
eigenvalues of 0 and the summation extends over all i for which la4;I > 1.  It should be 
clear that the trace, involving a sum over eigenvalues, exists even if Q has zero 
eigenvalues. In the last form f ( y )  is the Q-eigenvalue density, and, in the integral, x is 
endowed with a small positive imaginary part. 

The result (10) is not valid for an arbitrary Q formally because, unlike the situation 
with pairing, contractions around powers of Q may not be inhibited even if contractions 
around Q are. A sufficient condition for validity is that ((2') >> l l;(Qpi) where the p ;  
form any partition of p into two or more parts. For general Q the density is easily 
solvable for large and small la]; for arbitrary a, which we need for the problems 
mentioned above, the combinatorial problems are not yet solved but appear to be 
solvable, at least for the density. t 

The statistical independence of the matrix elements of a GOE realised in a many- 
particle space implies simultaneous interactions between all particles. A generalisa- 
tion, free of this defect, is the embedded GOE (EGOE) of k-body interactions, formed by 
a GOE generated in a k-particle space but acting in an (m >k)-particle space. Once 
again binary correlations are dominant for the density but as we increase m (for fixed k )  
the inhibitions on the allowed correlations gradually disappear (because different 
operators in a trace act on different particles and therefore effectively commute in the 
large-m limit). The EGOE density then gradually changes from semicircular to Gaussian 
(Mon and French 1975) while that for the augmented EGOE with Hamiltonian (H+ 
aQ) becomes a convolution of the Gaussian density p r ' ( x )  with the density (spec- 
trum), p ( O ) ( x ) ,  of aQ. Explicitly, writing (F)", in analogy with (F), for the m-particle 
average, and considering only m >> k 

(H"" = (2v - l)!!((H7)"}" *p!&?(x) 

x ((H + aQ)P)" 

= r = O  f ( : ) a r ( Q r T ' ' "  = r = o  f ( P ) ( ( a Q ) r ) m ( F 7 m  I 

* p r '  0 p ( O ) [ x ]  (1 1) 
in which, for this case, the corrections implied by (=> are in inverse powers of particle 

number. The centroid of p ! f ) ( x )  is seen to be zero and its variance 

t Note added in proof. This has now been done. 
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the Q spectrum is then preserved but the levels take on a Gaussian spread about their 
unperturbed positions. For small Icy1 the Q spectrum is lost in the background. 

The EGOE long-range fluctuations are similarly dominated by binary correlations; 
by the action of a central limit theorem they die out extremely rapidly as particle 
number increases. The short-range fluctuations however (A - level spacing), which are 
not dominated by binary correlations, escape the action of the CLT; the consequence is a 
very sharp separation of the secular and fluctuation behaviour. 

The GOE is a strongly ergodic ensemble (Pandey 1978) so that essentially all of its 
members display the same properties. For the EGOE this result applies, at least for the 
eigenvalue density (Mon and French 1975), so that we should expect Gaussian spectra 
for individual Hamiltonians when m >> k. On the other hand operators with special 
algebraic properties are found with negligible weight in the GOE and may therefore have 
a different asymptotic (large-m) spectrum. Thus for example (French and Draayer 
1978) the bilinear Casimir operator for an /-dimensional Lie group, realised in an 
m-particle space as a subgroup of U ( N )  (the group of unitary transformations among 
the N underlying single-particle states), has for large m ax: distribution independently 
of the specific way in which the algebra is realised. More generally than this (Halemane 
1978, private communication) one finds the asymptotic spectrum for an arbitrary 
two-body operator essentially in terms of a convolution of a number of x: densities, one 
for each ‘component’ of the Hamiltonian; just as x: becomes Gaussian for large /‘so 
would the spectra for ‘most’ H’s. In these cases also, which do not involve ensemble 
averaging, the results are determined by the dominance of binary correlations. 
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